MFG 512 Mechanics of Solids

Instructor	Adnan Kefal (<u>adnankefal@sabanciuniv.edu</u>)
Course	Sabanci University – 2021-22 Fall Semester
Attributes	Doctorate/Masters Level
	3 SU Credit / 10 ECTS / 42 Teaching Hours
Course	Mon 13:40 - 15:30 FASS 1096
Schedule	Tue 09:40 - 10:30 FENS G035
	Online lectures: https://sabanciuniv.zoom.us/j/3923709046

Course Relevance

Fundamentals of solid mechanics will be explained throughout this course. At the first stage, overview of basic structural mechanics will be shown. Then, vector calculus for engineering and vector & tensor properties and rules will be explained to establish a mathematical background for the students to earn advanced level mechanics problem solution capabilities. Later, small and/or large deformation theory in its general form will be explained and necessary equations for solid mechanics modeling like; conservation of energy, conservation of momentum will be discussed in detail. Afterwards, linear elastic material models and relations for isotropic, transversely isotropic, orthotropic, and anisotropic materials will be shown within the course. After that, variational principles and virtual work and energy principles will be explained and analytical solutions to simple boundary and initial value problems will be demonstrated. In addition, numerical solutions of continuum problems with finite element methods will be illustrated and examples of 1D-2D finite element analysis will be performed. Lastly, introductory level of plate theories, which covers the basic relationships for kinematic relations of deforming thin/thick 2D structures and composite-ply mechanics, will be explained within the course.

Objectives

This course is primarily designed for graduate students to gain understanding in the fields of mechanics of solids. Course introduces concepts of continuum mechanics, thermodynamic laws, and governing physics and equations for deformation of solids based on small and large deformation theories. The finite element concepts will be explained at introductory level and the students will be asked to solve practical solid mechanics problems using both analytical methods and numerical methods utilizing commercially available finite element software.

Learning Outcomes

At the conclusion of this course, students should be able to:

- (i) Vector calculus and mathematical background for solid mechanics problems
- (ii) Understanding of small/large deformation theories
- (iii) Ability to develop continuum elastic models for solid mechanics problems
- (iv) Understanding of analytical solution methods for boundary value problems
- (v) Finite element skills with applications of 1D-2D problems
- (vi) Ability to solve basic engineering problems using commercially available software
- (vii) Introductory level understanding of plate and composite-ply mechanics

Course Syllabus

Week	Торіс
Lecture 1	Review of Structural Mechanics
	Static equilibrium equations, Hooke's Law, tension, compression, shear, torsion
	bending, combined loading, stress transformations, beam deflections and
	buckling, failure theories, etc.
Lectures 2-3	Introduction to Vector/Tensor Calculus
	Scalars, vector and tensor definition, index (Summation) notation, vector/tenso
	operations, cross product, dyadic product, inner product, double contractions
	transpose, Kronecker delta and Levi-Civita operators, high-order tensors
	Eulerian/Lagrangian description, spatial derivatives including gradient
	divergence, curl.
	Deformation and Shape Changes in Solids
	Reference/deformed configurations, displacement and velocity fields
	displacement and deformation gradient tensors, Jacobian of the deformation
Lectures 4-5	gradient, Lagrange strain tensor, infinitesimal strain tensor, engineering shea
	and normal strains, infinitesimal rotation tensor, principal values and direction
	of the infinitesimal strain tensor, Cauchy-Green deformation tensors.
	Internal Forces in Solids
	Surface tractions, internal body force, traction acting on planes, Cauchy stres
Lecture 6	tensor, stress conjugates, Kirchhoff, nominal, and material stress tensors
	hydrostatic, deviatoric, von Mises effective stresses, 1 st /2 nd Piola-Kirchhoff Stres
	Tensors, boundary conditions on stresses.
	Constitutive Equations
	Symmetry property of elasticity tensor, isotropic elasticity tensor bulk, shear and
Lecture 7	Lame constants, Young's modulus, Poisson's ratio, thermal expansio
Lecture /	coefficients, orthotropic elasticity tensor, transversely isotropic materials
	anisotropic elasticity tensor, reduced stress-strain equations for plan
	deformation of isotropic solids, strain energy derivation of elasticity.
Lectures 8-9 (Midterm)	Thermodynamic Laws and Equilibrium Equations
	Thermodynamic states and restrictions, equation of motion for deformable
	bodies, linear momentum balance in terms of Cauchy stress, angular momentum
	balance in terms of Cauchy stress.
Lecture 10	Variational Methods and Principal of Virtual Work and Energy
	Work done by Cauchy stresses, rate of mechanical work in terms of stres
	measures and infinitesimal deformations, virtual work equations in terms of
	stress measures and infinitesimal deformations, Rayleigh-Ritz method, Reissner'
	variational theorem, weighted residual methods, D'Alambert principle.
Lecture 11	Solutions for Linear Elastic Solids and Boundary Value Problems
	Summary of governing equations: boundary and initial boundary valu
(Project	equations, superposition and linearity of solutions, uniqueness and existence of
assignment)	solutions, Saint-Venant's principle, Airy function solution to plane stress an

	Finite Element Method and Computational Applications
	Finite element mesh, nodes and elements, element connectivity, element types,
Lectures	material behavior, boundary conditions, initial conditions, constraints, solution
12-13	procedures and time increments, post-processing, 1D/2D applications of finite
	element method: mesh and material inputs, processor, assembly of equations,
	solution procedures, visualization of results.
Lectures 14	Introduction to Plate Theories and Laminated Composites
	Kirchhoff-Love plate theory, Mindlin–Reissner plate theory, macro mechanical
	analysis of laminates: classical lamination theory.
Exam Week	Final Exam
(Project	
deadline)	

Books and References

- 1. Bower, A.F., 2009. Applied mechanics of solids. CRC press.
- 2. Tadmor, E.B., Miller, R.E. and Elliott, R.S., 2012. Continuum mechanics and thermodynamics: from fundamental concepts to governing equations. Cambridge University Press.
- 3. Logan, D.L., 2016. A first course in the finite element method. Cengage Learning.
- 4. Zienkiewicz, O.C., Taylor, R.L., Taylor, R.L. and Taylor, R.L., 2000. The finite element method: solid mechanics (Vol. 2). Butterworth-heinemann.
- 5. Reddy, J.N., 2003. Mechanics of laminated composite plates and shells: theory and analysis. CRC press.

Assessment Criteria

Group Project (20%), Midterm Exam (30%), Final Exam (50%)

• There will be a semester-project and groups of four will be formed to work on the projects.

Course Material

The outline of lecture notes, project guidelines, and other course-related material will be posted at the SUCourse site (<u>https://sucourse.sabanciuniv.edu/</u>).